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Reflection cardinal Reflection cardinals (2/20)

» C: a class of structures with notions of substructures (notation:
A < B for "A, B €C, and A is a substructure of B"), the

underlying set (denoted also by A for A € C) and the cardinality
| A| of the structures A € C.

> For AcC, Sc.(A)={BeC: B<A, |B|<&k}
Similarly for S<,(A), S.(A) etc.

» For a property P

Refl (C,P) = min{x € Card : for any A € C if A =P then there are
stationarily many A’ € S (A) s.t.

A P}

> We let here min () = oco.



Examples (1/3) Reflection cardinals (3/20)

» For C = compact spaces and P : non-metrizable, we can prove in
ZFC: Refl (C,P) =Ny (Alan Dow, 1988).

> Refl(C,P) = Ny for these C and P means:

(ZFC) If a compact space X is non-metrizable then X has a non-
metrizable subspace of cardinality < N;.

> Dow's theorem is one of the first theorems in topology where the
only natural proof is obtained by the method of elementary
submodels and the elementary submodel proof was the proof which
established the theorem.



Examples (2/3) Reflection cardinals (4/20)

Theorem 1 (S.F., H.Sakai, L.Soukup, T.Usuba et al.)

The following are equivalent:

(a) Refl(C,P) =Wy for C = locally compact spaces and
‘P : non-metrizable

(b) Fodor-type Reflection Principe (FRP)

» FRP will be defined later.

» FRP implies the total failure of square principle.

» FRP can be forced starting from a model with a strongly compact
cardinal.

> Thus Refl (C,P) = Ny for C and P as above is consistent (modulo
a large cardinal).

» FRP is compatible with any assertions forcable by ccc po (also
starting from a model of CH or MM).



Examples (3/3) Reflection cardinals (5/20)

» For C = first countable spaces and P : non-metrizable, the
consistency of the equation QRefl(C,P) = Ny is unsolved
(Hamburger's problem).

> for C and P as above, Refl (C,P) < 2%0 is consistent (relative to a
large cardinal, A. Dow, F. Tall and W.A.R., Weiss (1990)).

» For C = topological spaces and P : non-metrizable,
Refl (C,P) = oo (A.Hajnal and I. Juhasz (1976)).

[ For any regular x, the topological space (k + 1, O) with
O=P(k)U{r+1\x: xC X\ is bounded in K} witnesses
Refl (C,P) > k. |



Reflection cardinals for coloring of graphs Reflction cardinals (6/20)

» For a cardinal 0 let PRefl . 5., be the reflection cardinal fRefl(C,P)
for C = graphs and P: “of coloring number > 4".

D> Refl L 5.co) = min{x : for any graph G, if col(G) > 0 then there is
G’ € S<(G) with col(G") > 6}

> Let PRefl .5 o, be the reflection cardinal Refl (C,P) for
C = graphs and P: “of chromatic number > §".

B> Refl<5.cpr = min{k : for any graph G, if chr(G) > § then there is
G’ € S<(G) with chr(G’) > ¢}



Reflection cardinals for coloring of graphs (2/2) Reflecton cardinls (7/20)

Lemma 2

For any graph G, we have chr(G) < col(G). There are graphs G
with chr(G) < col(G).

Theorem 3 (S.F., H.Sakai, L.Soukup, T.Usuba et al.)

Refl <o) = No is also equivalent to FRP. In particular this
equiation is consistent (modulo a large cardinal).

Theorem 4 (P. Erdés and A. Hajnal 1966)

Refl < ,_chr = No is inconsistent!
In ZFC, it is provable that Refl -, ., > Jo.

Problem 1 Does § > w analog of Erdés-Hajnal Theorem hold?



Main objective of the talk Reflection cardinals (3/20)

» It is not obvious in which relation JRefl . 5., and Refl .5 ., stand.
> In this talk we introduce results explaining
%Qf[ >w-col < %ef[ >w-chr

holds and, in certain cases, the corresponding inequality also holds
for regular cardinals & with 6<% = §.



Main objective of the talk Reflection cardinals (3/20)

» It is not obvious in which relation JRefl . 5., and Refl .5 ., stand.

> In this talk we introduce results explaining
%Qf[ >w-col < %ef[ >w-chr

holds and, in certain cases, the corresponding inequality also holds
for regular cardinals & with 6<% = §.

» Spoiler:

Refl s -cor < RAefl oo < Refl o Rado
< i):{ef[w—Galvin < D%Qf[ >w-chr



Reflection cardinal for FRP (1/3) Reflection cardinals (9/20)

» For a regular cardinal § and a cardinal A > 0, let
Ef ={a €\ : cf(a) =6}.

» For a regular cardinal § > w, the reflection cardinal for
0-Fodor-type Reflection Principle is defined as follows:

FRP(5, <r, \): For any stationary S C E and g : S — [\]’ s.t.
g(a) Caforae§, thereis a* < As.t. § < cf(a*) < K and
{x €[a*]° : sup(x) € S, g(sup(x)) C x} is stationary in [a*]°

> Refl s.prp = min{k : FRP(4, <k, A) for all regular A > ¢ holds.}
» The Fodor-type Reflection Principle (FRP) is defined by:

FRP < %ef[w—FRP = N2



Reflection cardinal for FRP (2/3) Reflection cardials (10/20)
Theorem 5 (H. Sakai and S.F. (2012))

Suppose that § is regular and k > Refl s_grp holds. Then, for any
graph G = (G, K), if col(G | 1) < § holds for all | € [G]<" then
col(G) < 6.

A Sketch of Proof: By induction on the cardinality A of the
graph G = (G, K).

> If X is singular Shelah’s Singular Compactness Theorem will do.
> For regular \ the following lemma is used:
ForICGand pe G, let Ki(p)={qgel : pK g}

Lemma 6 (Erdés, Hajnal (1966))

If (Go : « < ) is a filtration of G s.t. col(G,) < 0 and
| K, (p)| <6 for all « < pv and p € Go+1. Then we have
col(G) < 4.

O (Theorem 5)



Reflection cardinal for FRP (3/3) Reflection cardinals (11/20)
Theorem 5 (H. Sakai and S.F. (2012))

Suppose that § is regular and k > Refl s_grp holds. Then, for any
graph G = (G, K), if col(G | 1) < § holds for all | € [G]<" then
col(G) < 6.

Corollary 7

%ef[ >w-col < 9;{Qf[w—FRP'
Theorem 8 (T. Usuba)
Refl s cor = Refl,_rrp-

Corollary 9
FRP is equivalent to Refl ., ) = No.

Problem 2. Does Usuba's Theorem hold for § > w?



A version of Chang’s conjecture (1/2) Reflecton cardinls (12/20)

» For a sufficiently large (relative to ) regular 0, let
M = (H(0), €, ) where C is a well-ordering on #(6).
For regular § with 6<% =4, let
CCH(J,< K, A) : For any M < M with | M| =6, [M]<° C M, 6, &,
A€ M and § € M; and for any a € A there is M* < M and
a*eXl\ast. M <M 6§ <cf(a®) <k and
a® = min(A N M*\ sup(A N M)).

> Refls.ccr = min{k € Card : 6+ < k, CCH(J, < K, \)
holds for all A > k}



A version of Chang’s conjecture (2/2) Reflecton cardinls (13/20)

Lemma 10

Suppose that ¢ is a regular cardinal with 6<% =6, 6t < k a
cardinal and \ is a regular cardinal with ° < X for all ;i < \. Then
CCH(8, < K, \) implies FRP(5, < K, \).

The Idea of the Proof. Use a* in CCH(, < x, \) as the o in
FRP(0, < K, A). O(Lemma 10)

Corollary 11
%ef[ >w-col < 9;{ef[w—CCi'

Proof. By Lemma 10 and (the proof of) Theorem 5.
O(Corollary 11)



Rado Conjecture and cct (1/2) Reflection cardinals (14/20)
» The reflection cardinal for Rado's Conjecture is defined as follows

RC(d, <k, A) : For any tree of cardinality A if T is not J-special then
there is a T' € S<..(T) which is not d-special.

> Refl 5.pado = Min{r : RC(J, <k, \) holds for all A > k}.

» In the notation at the begining of this talk, JRefl 5 p, 40 IS
NRefl(C, P) where C is trees and P is the property “not J-special”.

» Rado’s Conjecture (RC) is the assertion Refl,,_p,qo = No.

> Rado's Conjecture can be forced starting from a model with a
strongly compact cardinal x and Levi-collapse cardinals < k by

countable conditions.



Rado Conjecture and cct (2/2) Reflction cardinals (15/20)

Theorem 12

Suppose that ¢ is a regular cardinal with §<° = § then
RC(3, < k, \%) implies CCH(4, < 1, \).

Sketch of the Proof. Assume CCH(8, < &, \) does not hold. Then
we can construct a tree T consisting of €-chain of elementary
submodels of M of cardinality § s.t. T witnesses the negation of
RC(4, < K, A%). [J(Theorem 12)
Corollary 13

For a regular cardinal § with §<° = §, we have
Refl s ccr < Refls e

Corollary 14
RC implies FRP.



Reflection cardinal for Galvin’s Conjecture (1/2) Refection crdinals (16/20)

» The reflection cardinal of Galvin's Conjecture can be formulated as
follows:

> Refl 5.canin = min{x : For any partial ordering P, if P is not
the union of less than or equal to 6 many
linear subsets, then there is a subordering
P’ of P of cardinality < x s.t. P is not
the union of less than or equal to § many
linear subsets}

» Galvin's Conjecture is the statement Refl _capin = No.

> The consistency of Galvin's Conjecture is a long-standing open
problem.



Reflection cardinal for Galvin’s Conjecture (2/2) Refection crdinals (17/20)

Theorem 15 (S. Todorcevic (2011))

For any infinite cardinal 6 we have
Refl s Rado < Refls_Ganin < Refl s chr-

Proof.

» The first inequality: Suppose that T = (T, <7) is a tree witnessing
Kk < Refl 5.pago- Let < be a well-ordering on T and Let <i1 be the
ordering on T defined by t <i7 t' < t and t’ are incomparable in
T and first branching nodes ty and t} below t and t’ respectively
are s.t. ty < tj. (T, <I7) is then a partial ordering witnessing
K< 9%ef[(S-Galvin'

» The second inequality: Suppose that P = (P, <p) is a partial
ordering witnessing x < JRefl s_capin- Let K be the binary relation
on P defined by (p,q) € K < p and g are incomparable w.r.t.
<p. (P, K) is then a graph witnessing x < Refl<s_cp,

O(Theorem 15)



Summary and applications (1/3) Reflecton cardinls (18/20)

» The inequalities we obtained sofar can be put together as the
following:

Refl S cor = Refl _prp < Refl . Rado
S i)f‘te]c[o.z-Galvin S 9%ef[>w-chr



Summary and applications (2/3) Reflecton cardinls (19/20)

Theorem 16

For a regular cardinals 6 < A, if there is a non reflecting stationary
subset of EJ, then there is a graph G = (G, K) s.t. (*)
col(G [ 1) < 6 for all I € [G]= but (**)col(G) > 6.

Proof. Let § C Eg\ be a non-reflecting stationary set and let
(ca : € S) aladder system on S (¢, € «\ Limits is cofinal in o
and ot(c,) = 9).

Then, letting,
K= {<CV,B>, <ﬁ704> HEERS 5’/8 € CO‘}’

G = (\,K) is as desired (Apply Lemma6 to show (*)).
O(Theorem 16)



Summary and applications (3/3) Reflecton cardinls (20/20)

Corollary 17 (Shelah, SH1006)

If there is a non reflecting stationary subset of E?, then there is a
graph G = (G, K) of size A% s.t. (*) chr(G | 1) < § for all
I € [G]<* but (**)chr(G) > 6.

Proof. By Theorem 16 and (the constructions in the proofs of) the
inequalities. O(Corollary 17)






Coloring number of a graph

» A graph G = (G, K) has the coloring number < § € Card if there
is a well-ordering C on G s.t. for all p € G the set

{ge G :gEpand gK p}

has cardinality < d. Such a well-ordering can be always chosen such
that it has the order type of the cardinality of G.

» The coloring number col(G) of a graph G is the minimal cardinal
among such ¢ as above.



)-Special Tree

» For a cardinal §, a tree T is said to be J-special if T can be
represented as the union of d-many pairwise incomparable sets
(antichains).

> If T is 5-special then there is no "-branch in T.



